89,370 research outputs found

    Are Galaxies Optically Thin to Their Own Lyman Continuum Radiation? II. NGC 6822

    Full text link
    Halpha and UBV photometry of NGC 6822 are used to study the distribution of OB stars and HII regions in the galaxy and to determine whether individual regions of the galaxy are in a state of ionization balance. Four distinct components of the Halpha emission (bright, halo, diffuse and field) differentiated by their surface brightnesses are identified. We find that approximately 1/2 of all OB stars in NGC 6822 are located in the field while only 1/4 are found in the combined bright and halo regions, suggesting that OB stars spend roughly 3/4 of their lifetimes outside ``classical'' H II regions. Comparing the observed Halpha emission with that predicted from stellar ionizing flux models, we find that although the bright, halo and diffuse regions are probably in ionization balance, the field region is producing at least 6 times as much ionizing flux as is observed. The ionization balance results in NGC 6822 suggest that star formation rates obtained from Halpha luminosities must underestimate the true star formation rate in this galaxy by about 50%. Comparing our results for NGC 6822 with previous results for the spiral galaxy M33, we find that the inner kiloparsec of M33 is in a more serious state of ionization imbalance, perhaps due to its higher surface density of blue stars.Comment: Replaced version should now compile with standard aastex style files. 28 pages, aastex preprint format. Accepted in ApJ. Hardcopies of figures available on request to [email protected]

    Thermodynamic property measurements in reflected shock air plasmas at 12,000 - 16,000 K

    Get PDF
    Reflected shock air plasma thermodynamic properties at 12,000 to 16,000 deg

    Renormalization Group Treatment of Nonrenormalizable Interactions

    Full text link
    The structure of the UV divergencies in higher dimensional nonrenormalizable theories is analysed. Based on renormalization operation and renormalization group theory it is shown that even in this case the leading divergencies (asymptotics) are governed by the one-loop diagrams the number of which, however, is infinite. Explicit expression for the one-loop counter term in an arbitrary D-dimensional quantum field theory without derivatives is suggested. This allows one to sum up the leading asymptotics which are independent of the arbitrariness in subtraction of higher order operators. Diagrammatic calculations in a number of scalar models in higher loops are performed to be in agreement with the above statements. These results do not support the idea of the na\"ive power-law running of couplings in nonrenormalizable theories and fail (with one exception) to reveal any simple closed formula for the leading terms.Comment: LaTex, 11 page

    The Stokes boundary layer for a thixotropic or antithixotropic fluid

    Get PDF
    We present a mathematical investigation of the oscillatory boundary layer (‘Stokes layer’) in a semi-infinite fluid bounded by an oscillating wall (the socalled ‘Stokes problem’), when the fluid has a thixotropic or antithixotropic rheology. We obtain asymptotic solutions in the limit of small-amplitude oscillations, and we use numerical integration to validate the asymptotic solutions and to explore the behaviour of the system for larger-amplitude oscillations. The solutions that we obtain differ significantly from the classical solution for a Newtonian fluid. In particular, for antithixotropic fluids the velocity reaches zero at a finite distance from the wall, in contrast to the exponential decay for a thixotropic or a Newtonian fluid. For small amplitudes of oscillation, three regimes of behaviour are possible: the structure parameter may take values defined instantaneously by the shear rate, or by a long-term average; or it may behave hysteretically. The regime boundaries depend on the precise specification of structure build-up and breakdown rates in the rheological model, illustrating the subtleties of complex fluid models in non-rheometric settings. For larger amplitudes of oscillation the dominant behaviour is hysteretic. We discuss in particular the relationship between the shear stress and the shear rate at the oscillating wall

    Conceptual design for Mobile Geological Laboratory position and heading fix system

    Get PDF
    Conceptual design of position fixing system for Mobile Geological Laboratory in Lunar Mobile Laboratory simulatio

    Strings and Branes in Nonabelian Gauge Theory

    Get PDF
    It is an old speculation that SU(N) gauge theory can alternatively be formulated as a string theory. Recently this subject has been revived, in the wake of the discovery of D-branes. In particular, it has been argued that at least some conformally invariant cousins of the theory have such a string representation. This is a pedagogical introduction to these developments for non-string theorists. Some of the existing arguments are simplified.Comment: Reference adde

    Quantum Phase Transitions beyond the Landau's Paradigm in Sp(4) Spin System

    Full text link
    We propose quantum phase transitions beyond the Landau's paradigm of Sp(4) spin Heisenberg models on the triangular and square lattices, motivated by the exact Sp(4)\simeq SO(5) symmetry of spin-3/2 fermionic cold atomic system with only ss-wave scattering. On the triangular lattice, we study a phase transition between the 3×3\sqrt{3}\times\sqrt{3} spin ordered phase and a Z2Z_2 spin liquid phase, this phase transition is described by an O(8) sigma model in terms of fractionalized spinon fields, with significant anomalous scaling dimensions of spin order parameters. On the square lattice, we propose a deconfined critical point between the Neel order and the VBS order, which is described by the CP(3) model, and the monopole effect of the compact U(1) gauge field is expected to be suppressed at the critical point.Comment: 6 pages, 3 figure

    Exact renormalization group equations and the field theoretical approach to critical phenomena

    Get PDF
    After a brief presentation of the exact renormalization group equation, we illustrate how the field theoretical (perturbative) approach to critical phenomena takes place in the more general Wilson (nonperturbative) approach. Notions such as the continuum limit and the renormalizability and the presence of singularities in the perturbative series are discussed.Comment: 15 pages, 7 figures, to appear in the Proceedings of the 2nd Conference on the Exact Renormalization Group, Rome 200
    corecore